
UNIT -I

GRID COMPUTING

Introduction to Grid COMPUTING
Why Discuss Architecture?

• Descriptive
– Provide a common vocabulary for use when describing

Grid systems

• Guidance
– Identify key areas in which services are required

• Prescriptive
– Define standard protocols and APIs to facilitate creation of

interoperable Grid systems and portable applications

Grid Computing
 Grid computing is a form of distributed computing whereby a

"super and virtual computer" is composed of a cluster of
networked, loosely coupled computers, acting in concert to
perform very large tasks.

 Grid computing (Foster and Kesselman, 1999) is a growing
technology that facilitates the executions of large-scale resource
intensive applications on geographically distributed computing
resources.

 Facilitates flexible, secure, coordinated large scale resource sharing
among dynamic collections of individuals, institutions, and
resource

 Enable communities (“virtual organizations”) to share
geographically distributed resources as they pursue common goals

 Ian Foster and Carl Kesselman

Criteria for a Grid:
Coordinates resources that are not subject to centralized

control.
Uses standard, open, general-purpose protocols and

interfaces.
Delivers nontrivial qualities of service.

Benefits
Exploit Underutilized resources
Resource load Balancing
Virtualize resources across an enterprise
Data Grids, Compute Grids
Enable collaboration for virtual organizations

Elements of Grid Computing

• Resource sharing
– Computers, data, storage, sensors, networks, …
– Sharing always conditional: issues of trust, policy,

negotiation, payment, …
• Coordinated problem solving

– Beyond client-server: distributed data analysis,
computation, collaboration, …

• Dynamic, multi-institutional virtual organizations
– Community overlays on classic org structures
– Large or small, static or dynamic

Virtual Organizations

• A set of individuals and/or institutions defined by a set of
sharing rules

• The sharing is highly controlled, with resource providers and
consumers defining clearly and carefully just what is shared

An example: the set of application service providers, storage
service providers, cycle providers and consultants engaged by
a car manufacturer to plan for a new factory

Another example: industrial consortium building a new aircraft

Grid Applications
Data and computationally intensive applications:
This technology has been applied to computationally-intensive

scientific, mathematical, and academic problems like drug
discovery, economic forecasting, seismic analysis back office data
processing in support of e-commerce

• A chemist may utilize hundreds of processors to screen
thousands of compounds per hour.

• Teams of engineers worldwide pool resources to analyze
terabytes of structural data.

• Meteorologists seek to visualize and analyze petabytes of climate
data with enormous computational demands.

Resource sharing
– Computers, storage, sensors, networks, …
– Sharing always conditional: issues of trust, policy, negotiation,

payment, …
Coordinated problem solving

– distributed data analysis, computation, collaboration, …

Computational Grid

“A computational grid is a hardware and software infrastructure
that provides dependable, consistent, pervasive, and inexpensive
access to high-end computational capabilities.”

”The Grid: Blueprint for a New Computing Infrastructure”,
Kesselman & Foster

Example : Science Grid (US Department of Energy)

Data Grid
• A data grid is a grid computing system that deals with data — the

controlled sharing and management of large amounts of
distributed data.

• Data Grid is the storage component of a grid environment.
Scientific and engineering applications require access to large
amounts of data, and often this data is widely distributed. A data
grid provides seamless access to the local or remote data required
to complete compute intensive calculations.

Example :
Biomedical informatics Research Network (BIRN),
the Southern California earthquake Center (SCEC).

Introduction to Grid Architecture
The nature of grid architecture

• A grid architecture identifies fundamental system
components, specifies the purpose and function of these

components, and indicate how these components interact.

Grid architecture requirements
The components are

•numerous
•owned and managed by different, potentially mutually
distrustful organisations and individuals
may be potentially faulty
•have different security requirements and policies
heterogeneous
•connected by heterogeneous, multilevel networks
have different resource management policies
are likely to be geographically separated

Layered Grid Architecture: Fabric Layer
Just what you would expect: the diverse mix of
resources that may be shared

Individual computers, Condor pools, file systems, archives,
metadata catalogs, networks, sensors, etc., etc.

Defined by interfaces, not physical characteristics

Layered Grid Architecture:Connectivity Layer
Communication

Internet protocols: IP, DNS, routing, etc.
Security: Grid Security Infrastructure (GSI)

Uniform authentication, authorization, and message
protection mechanisms in multi-institutional setting
Single sign-on, delegation, identity mapping
Public key technology, SSL, X.509, GSS-API
Supporting infrastructure: Certificate Authorities, certificate
& key management, …

Layered Grid Architecture:Resource Layer
Grid Resource Allocation Mgmt (GRAM)

Remote allocation, reservation, monitoring, control of
compute resources

GridFTP protocol (FTP extensions)
High-performance data access & transport

Grid Resource Information Service (GRIS)
Access to structure & state information

Network reservation, monitoring, control
All built on connectivity layer: GSI & IP

Layered Grid Architecture:Collective Layer
Index servers aka metadirectory services

Custom views on dynamic resource collections
assembled by a community

Resource brokers (e.g., Condor Matchmaker)
Resource discovery and allocation

Replica catalogs
Replication services
Co-reservation and co-allocation services
Workflow management services
Etc.

Layered Grid Architecture:Applications layer
There are user applications that operate within the VO
environment
Applications are constructed by calling upon services defined at
any layer
Each of the layers are well defined using protocols, provide
access to services
Well-defined APIs also exist to work with these services

Grid Architecture
The Hourglass Model

• Focus on architecture issues
– Propose set of core services as basic

infrastructure
– Used to construct high-level,

domain-specific solutions (diverse)
• Design principles

– Keep participation cost low
– Enable local control
– Support for adaptation
– “IP hourglass” model

Diverse global services

Core
services

Local OS

A p p l i c a t i o n s

Layered Grid Architecture
(By Analogy to Internet Architecture)

Application

Fabric“Controlling things locally”: Access
to, & control of, resources

Connectivity“Talking to things”: communication
(Internet protocols) & security

Resource“Sharing single resources”:
negotiating access, controlling use

Collective
“Coordinating multiple resources”:
ubiquitous infrastructure services,
app-specific distributed services

Internet
Transport

Application

Link

Internet Protocol A
rchitecture

Example:
Data Grid Architecture

Discipline-Specific Data Grid Application

Coherency control, replica selection, task management,
virtual data catalog, virtual data code catalog, …

Replica catalog, replica management, co-allocation,
certificate authorities, metadata catalogs,

Access to data, access to computers, access to network
performance data, …
Communication, service discovery (DNS), authentication,
authorization, delegation

Storage systems, clusters, networks, network caches, …

Collective
(App)

App

Collective
(Generic)

Resource

Connect

Fabric

Web services and the Grid
GT4 replaced OGSI by WSRF (Web Service Resource Framework)
Framework developed as a joint effort of W3C and OGF groups
GWSDL foi abandonada

UNIT II-CLOUD ARCHITECTURE
AND MODEL

What is Cloud Computing?
• Cloud Computing is a general term used to describe a new

class of network based computing that takes place over the
Internet,
– basically a step on from Utility Computing
– a collection/group of integrated and networked hardware,

software and Internet infrastructure (called a platform).
– Using the Internet for communication and transport

provides hardware, software and networking services to
clients

• These platforms hide the complexity and details of the
underlying infrastructure from users and applications by
providing very simple graphical interface or API (Applications
Programming Interface).

What is Cloud Computing?
• In addition, the platform provides on demand services, that

are always on, anywhere, anytime and any place.
• Pay for use and as needed, elastic

– scale up and down in capacity and functionalities
• The hardware and software services are available to

– general public, enterprises, corporations and businesses
markets

Cloud Architecture

3 Cloud Service Models
• Cloud Software as a Service (SaaS)

– The capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure
and accessible from various client devices through a thin
client interface such as a Web browser (e.g., web-based
email).

• Cloud Platform as a Service (PaaS)
– The capability provided to the consumer is to deploy onto

the cloud infrastructure consumer-created applications
using programming languages and tools supported by the
provider (e.g., Java, Python, .Net).

• Cloud Infrastructure as a Service (IaaS)
– The capability provided to the consumer is to rent

processing, storage, networks, and other fundamental
computing resources where the consumer is able to
deploy and run arbitrary software, which can include
operating systems and applications.

.

Cloud Computing Characteristics
Common Characteristics:

Low Cost Software

Virtualization Service Orientation

Advanced Security

Homogeneity

Massive Scale Resilient Computing

Geographic Distribution

Essential Characteristics:

Resource Pooling
Broad Network Access Rapid Elasticity

Measured Service

On Demand Self-Service

Cloud Service Models
Software as a

Service (SaaS)
Platform as a

Service (PaaS)
Infrastructure as a

Service (IaaS)

Google App
Engine

SalesForce CRM

LotusLive

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim Grance

Saas, PaaS, IaaS

•

.

SaaS Maturity Model

Level 2: Configurable per
customer

Level 3: configurable &
Multi-Tenant-Efficient

Level 1: Ad-Hoc/Custom –
One Instance per customer

Level 4: Scalable, Configurable
& Multi-Tenant-Efficient

Software as a Service (SaaS)
• SaaS is a model of software deployment where an

application is hosted as a service provided to
customers across the Internet.

• Saas alleviates the burden of software
maintenance/support
– but users relinquish control over software versions and

requirements.

• Terms that are used in this sphere include
– Platform as a Service (PaaS) and
– Infrastructure as a Service (IaaS)

Services

Application

Development

Platform

Storage

Hosting

Cloud Computing Service Layers
Description
Services – Complete business services such as PayPal, OpenID,
OAuth, Google Maps, Alexa

Services

Application
Focused

Infrastructure
Focused

Application – Cloud based software that eliminates the need
for local installation such as Google Apps, Microsoft Online

Storage – Data storage or cloud based NAS such as CTERA,
iDisk, CloudNAS

Development – Software development platforms used to
build custom cloud based applications (PAAS & SAAS) such as
SalesForce

Platform – Cloud based platforms, typically provided using
virtualization, such as Amazon ECC, Sun Grid

Hosting – Physical data centers such as those run by IBM, HP,
NaviSite, etc.

Basic Cloud Characteristics
• The “no-need-to-know” in terms of the underlying

details of infrastructure, applications interface with
the infrastructure via the APIs.

• The “flexibility and elasticity” allows these systems
to scale up and down at will
– utilising the resources of all kinds

• CPU, storage, server capacity, load balancing, and databases

• The “pay as much as used and needed” type of
utility computing and the “always on!, anywhere
and any place” type of network-based computing.

Basic Cloud Characteristics

• Cloud are transparent to users and
applications, they can be built in multiple
ways
– branded products, proprietary open source,

hardware or software, or just off-the-shelf PCs.

• In general, they are built on clusters of PC
servers and off-the-shelf components plus
Open Source software combined with in-
house applications and/or system software.

Cloud Security Challenges
• Trusting vendor’s security model

• Multi-tenancy

• Data ownership issues

• QoS guarantees

• Attraction to hackers (high-value target)

• Security of virtual OSs in the cloud

• Obtaining support from cloud vendor for security related
investigations

What is the purpose and benefits?

• Cloud computing enables companies and
applications, which are system infrastructure
dependent, to be infrastructure-less.

• By using the Cloud infrastructure on “pay as used
and on demand”, all of us can save in capital and
operational investment!

• Clients can:
– Put their data on the platform instead of on their own

desktop PCs and/or on their own servers.
– They can put their applications on the cloud and use the

servers within the cloud to do processing and data
manipulations etc.

Cloud-Sourcing
• Why is it becoming a Big Deal:

– Using high-scale/low-cost providers,
– Any time/place access via web browser,
– Rapid scalability; incremental cost and load sharing,
– Can forget need to focus on local IT.

• Concerns:
– Performance, reliability, and SLAs,
– Control of data, and service parameters,
– Application features and choices,
– Interaction between Cloud providers,
– No standard API – mix of SOAP and REST!
– Privacy, security, compliance, trust…

Opportunities and Challenges
• The use of the cloud provides a number of

opportunities:
– It enables services to be used without any understanding

of their infrastructure.
– Cloud computing works using economies of scale:

• It potentially lowers the outlay expense for start up companies, as
they would no longer need to buy their own software or servers.

• Cost would be by on-demand pricing.
• Vendors and Service providers claim costs by establishing an

ongoing revenue stream.

– Data and services are stored remotely but accessible from
“anywhere”.

Cloud Ecosystem

Figure. The cloud ecosystem for building private clouds. (a) Cloud consumers need flexible infrastructure on demand. (b) Cloud management
provides remote and secure interfaces for creating, controlling, and monitoring virtualized resources on an infrastructure-as-a-service
cloud. (c) Virtual infrastructure (VI) management provides primitives to schedule and manage VMs across multiple physical hosts. (d)
VM managers provide simple primitives (start, stop, suspend) to manage VMs on a single host.

Figure from Virtual Infrastructure Management in Private and Hybrid Clouds, Internet Computing, September 2009.

.

Cloud Ecosystem
• The public cloud ecosystem has evolved around providers,

users, and technologies.

• The previous figure suggests one possible ecosystem for
private clouds. There are 4 levels of development of
ecosystem development: cloud users/consumers, cloud
management, VI management, and VM managers.

• At the cloud management level, the cloud manager provides
virtualized resources over an IaaS platform.

• At the virtual infrastructure (VI) management level, the
manager allocates VMs over multiple server clusters.
Examples: OpenNebula, VMWare vSphere. These can manage
VM managers like Xen, KVM etc. These support dynamic
placement and VM management on a pool of physical
resources, automatic load balancing, server consolidation,
and dynamic infrastructure resizing and partitioning.

• Finally, at the VM management level the VM managers
handles VMs installed on individual host machines. Examples:
Xen, VMWare, KVM.

.

Advantages of Cloud Computing

• Lower computer costs:
– You do not need a high-powered and high-priced computer

to run cloud computing's web-based applications.
– Since applications run in the cloud, not on the desktop PC,

your desktop PC does not need the processing power or hard
disk space demanded by traditional desktop software.

– When you are using web-based applications, your PC can be
less expensive, with a smaller hard disk, less memory, more
efficient processor...

– In fact, your PC in this scenario does not even need a CD or
DVD drive, as no software programs have to be loaded and
no document files need to be saved.

Advantages of Cloud Computing

• Improved performance:
– With few large programs hogging your computer's

memory, you will see better performance from your PC.
– Computers in a cloud computing system boot and run

faster because they have fewer programs and processes
loaded into memory…

• Reduced software costs:
– Instead of purchasing expensive software applications, you

can get most of what you need for free-ish!
• most cloud computing applications today, such as the Google Docs suite.

– better than paying for similar commercial software
• which alone may be justification for switching to cloud applications.

Disadvantages of Cloud Computing

• Can be slow:
– Even with a fast connection, web-based applications can

sometimes be slower than accessing a similar software
program on your desktop PC.

– Everything about the program, from the interface to the
current document, has to be sent back and forth from your
computer to the computers in the cloud.

– If the cloud servers happen to be backed up at that
moment, or if the Internet is having a slow day, you would
not get the instantaneous access you might expect from
desktop applications.

23

Private VS Public Cloud

UNIT-III -CLOUD
INFRASTRUCTURE

Introduction
High performance networks and advanced development of
internet is the basis for cloud computing .

Cloud computing has started taking shape incorporating
virtualization and on demand deployment and internet delivery of
services

Conventional

• Manually Provisioned
• Dedicated Hardware
• Fixed Capacity
• Pay for Capacity
• Capital & Operational

Expenses

Cloud

• Self-provisioned
• Shared Hardware
• Elastic Capacity
• Pay for Use
• Operational Expenses

Conventional Computing
vs.

Cloud Computing

Five Key Cloud Attributes:

1. Shared / pooled resources
2. Broad network access
3. On-demand self-service
4. Scalable and elastic
5. Metered by use

Shared / Pooled Resources:

• Resources are drawn from a common pool
• Common resources build economies of scale
• Common infrastructure runs at high efficiency

Broad Network Access:

• Open standards and APIs
• Almost always IP, HTTP, and REST
• Available from anywhere with an

internet connection

On-Demand Self-Service:

• Completely automated
• Users abstracted from the implementation
• Near real-time delivery (seconds or

minutes)
• Services accessed through a self-serve

web interface

Scalable and Elastic:

• Resources dynamically-allocated
between users

• Additional resources dynamically-
released when needed

• Fully automated

Metered by Use:

• Services are metered, like a utility
• Users pay only for services used
• Services can be cancelled at any time

Architecture Overview

Architectural Layers of Cloud
Computing

In the cloud computing stack, there are three basic layers
that together create cloud environment. They are:

1.Infrastructure as a Service(IaaS)
2.Platform as a Service (PaaS)
3.Software as a Service (SaaS)

SaaS

PaaS

IaaS

SaaS

PaaS

IaaS

Amazon Google Microsoft Salesforce

Service Delivery Model Examples

Products and companies shown for illustrative purposes only and should not be
construed as an endorsement

Framework of cloud computing

Virtualized resources

Compute Networking

Storage

Image Metadata

Image

Virtualized images

Software kernel (OS. VM Manager)

Hardware

Application

Platform

Infrastructure

Basic middleware
(database services , application server)

Developments tools

Services and built in functionality

Virtual infrastructure management
and Cloud Computing

For building the cloud environment a variety of
requirements must be met to provide a uniform and
homogeneous view of the virtualized resources.

Virtual Infrastructure Management is the key
component to build the cloud environment which does
the dynamic orchestration of virtual machines on a pool
of physical resources.

Virtual infrastructure management provide primitives
to schedule and manage VMs across multiple physical
hosts.

Cloud management provide remote and secure
interface for creating controlling and monitoring
virtualized resources on IaaS.

Virtual infrastructure management Virtual infrastructure management
and Cloud Computingand Cloud Computing

View of Cloud Deployment

Cloud
Application

Client
Infrastructure

Application

PaaS

Virtualized Application

Platfor
m

Service

IaaS
Infrastructure

Storage

SaaS

Software as a Service

 It is a Deployment/Delivery model
• Hosted and managed by vendor
• Delivered across the internet

 It is a Business Model : usage-based pricing(vs.
perpetual license model of on –premise
software).Examples:
• Per user per month
• Per transaction
• Per GB of storage per month

Software as a ServiceSoftware as a Service

Architectural
 Multi-tenancy
 Scalability
 Security
 Performance

Functional
 Provisioning
 Billing
 Metering
 Monitoring

Service Deployment Methodology

• It is paramount that IT and business goals are
aligned throughout the process when
considering a move to cloud computing, such
as cost savings, security, control, flexibility,
manageability, simplification, ease of use,
expandability, reliability, availability…

Consultation
and

Education

Assessment
and Design

Deployment
and

Migration

Monitoring
and Tuning

Customer
Business

Driver

Assessment and Design
Proper alignment with business and technical goals

• Cloud Assessment and Design
Working with business users and IT professionals to define
high-level requirements (Business Driver)
Assessing the Pros and Cons for using Cloud solutions
Determining appropriate risks and management strategies for
Cloud solutions

• Cloud Solution Selection
Determining specific business and technical challenges
Choosing the right Cloud alternatives (type and delivery
model)
Identifying the management requirements for the different
Cloud alternatives
Defining the solution alternatives and the merits / risks with
each

Deployment and Migration
Assessment and Design leads to a working solutions
document (published best practice solutions guides)

• Solutions planning
• Investment planning & acquisition
• Integration & test
• Deployment, documentation, operations & maintenance

Monitoring and Tuning

Effectively Monitoring Your Cloud Ecosystem
• A cloud monitoring solution should identify problems

before they become critical and adapt as business
requirements change. A nice option may be to deploy
a third party monitoring service to ensure customer
satisfaction and allow an unbiased perspective on
application performance. By implementing a
comprehensive monitoring solution IT organization are
equipped with the tools to determine real business
value for cloud solutions and to provide an important
feedback mechanism for tuning their cloud solutions.

UNIT-IV PROGRAMMING
MODEL

New Cloud Programming Paradigms

Easy to write and run highly parallel programs in new cloud programming
paradigms:

• Google: MapReduce and Sawzall
• Amazon: Elastic MapReduce service (pay-as-you-go)
• Google (MapReduce)

– Indexing: a chain of 24 MapReduce jobs
– ~200K jobs processing 50PB/month (in 2006)

• Yahoo! (Hadoop + Pig)
– WebMap: a chain of 100 MapReduce jobs
– 280 TB of data, 2500 nodes, 73 hours

• Facebook (Hadoop + Hive)
– ~300TB total, adding 2TB/day (in 2008)
– 3K jobs processing 55TB/day

• Similar numbers from other companies, e.g., Yieldex, eharmony.com, etc.
• NoSQL: MySQL is an industry standard, but Cassandra is 2400 times faster!

What is MapReduce?

• Terms are borrowed from Functional Language (e.g., Lisp)
Sum of squares:

• (map square ‘(1 2 3 4))
– Output: (1 4 9 16)
[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16))
– (+ 16 (+ 9 (+ 4 1)))
– Output: 30
[processes set of all records in batches]

• Let’s consider a sample application: Wordcount
– You are given a huge dataset (e.g., Wikipedia dump) and asked to list the count for each

of the words in each of the documents therein

Map

• Process individual records to generate
intermediate key/value pairs.

Welcome Everyone
Hello Everyone

Welcome 1
Everyone 1
Hello 1
Everyone 1 Input <filename, file text>

Key Value

Map

• Parallelly Process individual records to
generate intermediate key/value pairs.

Welcome Everyone
Hello Everyone

Welcome 1
Everyone 1
Hello 1
Everyone 1 Input <filename, file text>

MAP TASK 1

MAP TASK 2

Map

• Parallelly Process a large number of
individual records to generate
intermediate key/value pairs.

Welcome Everyone

Hello Everyone

Why are you here

I am also here

They are also here

Yes, it’s THEM!

The same people we were thinking of

…….

Welcome 1

Everyone 1

Hello 1

Everyone 1

Why 1

Are 1

You 1

Here 1

…….Input <filename, file text>

MAP TASKS

Reduce

• Reduce processes and merges all
intermediate values associated per key

Welcome 1
Everyone 1
Hello 1
Everyone 1

Everyone 2
Hello 1
Welcome 1

Key Value

Reduce
• Each key assigned to one

Reduce
• Parallelly Processes and merges all

intermediate values by partitioning keys

• Popular: Hash partitioning (hash(key)%number
of reduce servers)

Welcome 1
Everyone 1
Hello 1
Everyone 1

Everyone 2
Hello 1
Welcome 1

REDUCE TASK 1

REDUCE TASK 2

• Input: (lineNumber, line) records
• Output: lines matching a given pattern

• Map:
if(line matches pattern):

output(line)

• Reduce: identify function
– Alternative: no reducer (map-only job)

• Input: (key, value) records
• Output: same records, sorted by key

• Map: identity function
• Reduce: identify function

• Trick: Pick partitioning
function h such that
k1<k2 => h(k1)<h(k2)

• Input: (filename, text) records
• Output: list of files containing each word

• Map:
foreach word in

text.split():
output(word, filename)

• Combine: uniquify filenames for each word

• Input: (filename, text) records
• Output: top 100 words occurring in the most

files

• Two-stage solution:
– Job 1:

• Create inverted index, giving (word, list(file)) records

– Job 2:
• Map each (word, list(file)) to (count, word)
• Sort these records by count as in sort job

What is Hadoop?

• Apache top level project, open-source
implementation of frameworks for reliable,
scalable, distributed computing and data
storage.

• It is a flexible and highly-available architecture
for large scale computation and data
processing on a network of commodity
hardware.

Search engines in 1990s

1996

1996

1997

1996

Google search engines

1998

2013

Hadoop Code - Map
public static class MapClass extends MapReduceBase

implements Mapper<LongWritable, Text, Text,
IntWritable> {

private final static IntWritable one =
new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter)

throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
output.collect(word, one);

}
}

}

Hadoop Code - Reduce
public static class ReduceClass extends MapReduceBase

implements Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce(
Text key,
Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter)

throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

}
}

Hadoop Code - Driver
// Tells Hadoop how to run your Map-Reduce job
public void run (String inputPath, String outputPath)

throws Exception {
// The job. WordCount contains MapClass and Reduce.
JobConf conf = new JobConf(WordCount.class);
conf.setJobName(”mywordcount");
// The keys are words
(strings) conf.setOutputKeyClass(Text.class);
// The values are counts (ints)
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MapClass.class);
conf.setReducerClass(ReduceClass.class);
FileInputFormat.addInputPath(

conf, newPath(inputPath));
FileOutputFormat.setOutputPath(

conf, new Path(outputPath));
JobClient.runJob(conf);

}

Hadoop’s Developers
2005: Doug Cutting and Michael J. Cafarella developed
Hadoop to support distribution for the Nutch search engine
project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache
Software Foundation.

Hadoop’s Architecture: MapReduce
Engine

Hadoop Distributed FileSystem
• Tailored to needs of MapReduce
• Targeted towards many reads of filestreams

• Writes are more costly
• Open Data Format

• Flexible Schema
• Queryable Database

• Fault Tolerance
• High degree of data replication (3x by default)
• No need for RAID on normal nodes

• Large blocksize (64MB)
• Location awareness of DataNodes in network

Hadoop Usage

• Non-realtime large dataset computing:

o NY Times was dynamically generating PDFs of
articles from 1851-1922

o Wanted to pre-generate & statically serve
articles to improve performance

o Using Hadoop + MapReduce running on EC2 /
S3, converted 4TB of TIFFs into 11 million PDF
articles in 24 hrs

Hadoop Usage: Facebook Messages

• Design requirements:
o Integrate display of email, SMS and chat

messages between pairs and groups of
users

o Strong control over who users receive
messages from

o Suited for production use between 500
million people immediately after launch

o Stringent latency & uptime
requirements

Hadoop Usage: Facebook Messages
• System requirements

o High write throughput
o Cheap, elastic storage
o Low latency
o High consistency (within a

single data center good
enough)

o Disk-efficient sequential and
random read performance

Hadoop Usage: Facebook Messages
• Classic alternatives

o These requirements typically met using large MySQL cluster &
caching tiers using Memcache

o Content on HDFS could be loaded into MySQL or Memcached if
needed by web tier

• Problems with previous solutions
o MySQL has low random write throughput… BIG problem for

messaging!
o Difficult to scale MySQL clusters rapidly while maintaining

performance
o MySQL clusters have high management overhead, require more

expensive hardware

Hadoop Usage: Facebook Messages
• Facebook’s solution

o Hadoop + HBase as foundations
o Improve & adapt HDFS and HBase to scale to FB’s workload and

operational considerations
 Major concern was availability: NameNode is SPOF & failover

times are at least 20 minutes
 Proprietary “AvatarNode”: eliminates SPOF, makes HDFS safe to

deploy even with 24/7 uptime requirement
 Performance improvements for realtime workload: RPC

timeout. Rather fail fast and try a different DataNode

Inhomogeneous Data Performance

1500

1550

1600

1650

1700

1750

1800

1850

1900

0 50 100 150 200 250 300

Ti
m

e
(s

)

Standard Deviation

Randomly Distributed Inhomogeneous Data
Mean: 400, Dataset Size: 10000

DryadLinq SWG Hadoop SWG Hadoop SWG on VM

Inhomogeneity of data does not have a significant effect when the sequence
lengths are randomly distributed
Dryad with Windows HPCS compared to Hadoop with Linux RHEL on Idataplex (32 nodes)

Inhomogeneous Data Performance

0

1,000

2,000

3,000

4,000

5,000

6,000

0 50 100 150 200 250 300

To
ta

l T
im

e
(s

)

Standard Deviation

Skewed Distributed Inhomogeneous data
Mean: 400, Dataset Size: 10000

DryadLinq SWG Hadoop SWG Hadoop SWG on VM

This shows the natural load balancing of Hadoop MR dynamic task assignment
using a global pipe line in contrast to the DryadLinq static assignment
Dryad with Windows HPCS compared to Hadoop with Linux RHEL on Idataplex (32 nodes)

Pegasus and DAGMan

• Pegasus
– Resource, data discovery
– Mapping computation to resources
– Orchestrate data transfers
– Publish results
– Graph optimizations

• DAGMAN
– Submits tasks to execution resources
– Monitor the execution
– Retries in case of failure
– Maintain dependencies

Some Other Applications of
MapReduce

Distributed Grep:
– Input: large set of files
– Output: lines that match pattern

– Map – Emits a line if it matches the supplied pattern
– Reduce – Copies the intermediate data to output

Some Other Applications of
MapReduce (2)

Reverse Web-Link Graph
– Input: Web graph: tuples (a, b) where (page a  page

b)
– Output: For each page, list of pages that link to it

– Map – process web log and for each input <source, target>, it
outputs <target, source>

– Reduce - emits <target, list(source)>

Some Other Applications of
MapReduce (3)

Count of URL access frequency
– Input: Log of accessed URLs, e.g., from proxy server
– Output: For each URL, % of total accesses for that URL

– Map – Process web log and outputs <URL, 1>
– Multiple Reducers - Emits <URL, URL_count>
(So far, like Wordcount. But still need %)
– Chain another MapReduce job after above one
– Map – Processes <URL, URL_count> and outputs

<1, (<URL, URL_count>)>
– 1 Reducer – Sums up URL_count’s to calculate

overall_count.
Emits multiple <URL, URL_count/overall_count>

Some Other Applications of
MapReduce (4)

Map task’s output is sorted (e.g., quicksort)
Reduce task’s input is sorted (e.g., mergesort)

Sort
– Input: Series of (key, value) pairs
– Output: Sorted <value>s

– Map – <key, value> -> <value, _> (identity)
– Reducer – <key, value> -> <key, value> (identity)
– Partitioning function – partition keys across reducers

based on ranges
• Take data distribution into account to balance reducer tasks

UNIT V

Security Issues in the Cloud
• In theory, minimizing any of the issues would help:

– Loss of Control
• Take back control

– Data and apps may still need to be on the cloud
– But can they be managed in some way by the consumer?

– Lack of trust
• Increase trust (mechanisms)

– Technology
– Policy, regulation
– Contracts (incentives): topic of a future talk

– Multi-tenancy
• Private cloud

– Takes away the reasons to use a cloud in the first place
• VPC: its still not a separate system
• Strong separation

Minimize Lack of Trust: Certification

• Certification
– Some form of reputable, independent, comparable

assessment and description of security features and
assurance

– Sarbanes-Oxley, DIACAP, DISTCAP, etc (are they sufficient
for a cloud environment?)

• Risk assessment
– Performed by certified third parties
– Provides consumers with additional assurance

Minimize Loss of Control in the Cloud

• Monitoring
• Utilizing different clouds
• Access control management

Minimize Loss of Control: Monitoring
• Cloud consumer needs situational awareness for critical applications

– When underlying components fail, what is the effect of the failure to the
mission logic

– What recovery measures can be taken (by provider and consumer)
• Requires an application-specific run-time monitoring and management tool for the

consumer
– The cloud consumer and cloud provider have different views of the system
– Enable both the provider and tenants to monitor the the components in the

cloud that are under their control
– Provide mechanisms that enable the provider to act on attacks he can handle.

• infrastructure remapping (create new or move existing fault domains)
• shutting down offending components or targets (and assisting tenants

with porting if necessary
• Repairs

– Provide mechanisms that enable the consumer to act on attacks that he can
handle (application-level monitoring).

• RAdAC (Risk-adaptable Access Control)
• VM porting with remote attestation of target physical host
• Provide ability to move the user’s application to another cloud

Minimize Loss of Control: Utilize Different
Clouds

• The concept of ‘Don’t put all your eggs in one basket’
– Consumer may use services from different clouds through an intra-

cloud or multi-cloud architecture
– Propose a multi-cloud or intra-cloud architecture in which consumers

• Spread the risk
• Increase redundancy (per-task or per-application)
• Increase chance of mission completion for critical applications

– Possible issues to consider:
• Policy incompatibility (combined, what is the overarching policy?)
• Data dependency between clouds
• Differing data semantics across clouds
• Knowing when to utilize the redundancy feature (monitoring technology)
• Is it worth it to spread your sensitive data across multiple clouds?

– Redundancy could increase risk of exposure

Minimize Multi-tenancy in the Cloud

• Can’t really force the provider to accept less tenants
– Can try to increase isolation between tenants

• Strong isolation techniques (VPC to some degree)
– C.f. VM Side channel attacks (T. Ristenpart et al.)

• QoS requirements need to be met
• Policy specification

– Can try to increase trust in the tenants
• Who’s the insider, where’s the security boundary? Who can I trust?
• Use SLAs to enforce trusted behavior

Taxonomy of Fear

• Confidentiality
– Fear of loss of control over data

• Will the sensitive data stored on a cloud remain
confidential?

• Will cloud compromises leak confidential client data
– Will the cloud provider itself be honest and won’t

peek into the data?
• Integrity

– How do I know that the cloud provider is doing the
computations correctly?

– How do I ensure that the cloud provider really stored
my data without tampering with it?

Taxonomy of Fear (cont.)

• Availability
– Will critical systems go down at the client, if the

provider is attacked in a Denial of Service attack?
– What happens if cloud provider goes out of

business?
– Would cloud scale well-enough?
– Often-voiced concern

• Although cloud providers argue their downtime
compares well with cloud user’s own data centers

Taxonomy of Fear (cont.)

• Privacy issues raised via massive data mining
– Cloud now stores data from a lot of clients, and

can run data mining algorithms to get large
amounts of information on clients

• Increased attack surface
– Entity outside the organization now stores and

computes data, and so
– Attackers can now target the communication link

between cloud provider and client
– Cloud provider employees can be phished

Threat Model

• A threat model helps in analyzing a security
problem, design mitigation strategies, and
evaluate solutions
•Steps:

– Identify attackers, assets, threats and other
components

– Rank the threats
– Choose mitigation strategies
– Build solutions based on the strategies

Threat Model

• Basic components
– Attacker modeling

• Choose what attacker to consider
– insider vs. outsider?
– single vs. collaborator?

• Attacker motivation and capabilities

– Attacker goals
– Vulnerabilities / threats

What is the issue?

• The core issue here is the levels of trust
– Many cloud computing providers trust their customers
– Each customer is physically commingling its data with

data from anybody else using the cloud while logically
and virtually you have your own space

– The way that the cloud provider implements security
is typically focused on they fact that those outside of
their cloud are evil, and those inside are good.

• But what if those inside are also evil?

Attacker Capability: Malicious Insiders
• At client

– Learn passwords/authentication information
– Gain control of the VMs

• At cloud provider
– Log client communication
– Can read unencrypted data
– Can possibly peek into VMs, or make copies of VMs
– Can monitor network communication, application patterns
– Why?

• Gain information about client data
• Gain information on client behavior
• Sell the information or use itself

Attacker Capability: Outside attacker

• What?
– Listen to network traffic (passive)
– Insert malicious traffic (active)
– Probe cloud structure (active)
– Launch DoS

• Goal?
– Intrusion
– Network analysis
– Man in the middle
– Cartography

The Network Level
• Ensuring confidentiality and integrity of your

organization’s data-in-transit to and from your public
cloud provider

• Ensuring proper access control (authentication,
authorization, and auditing) to whatever resources you
are using at your public cloud provider

• Ensuring availability of the Internet-facing resources in
a public cloud that are being used by your organization,
or have been assigned to your organization by your
public cloud providers

• Replacing the established model of network zones and
tiers with domains

The Network Level - Mitigation

• Note that network-level risks exist regardless
of what aspects of “cloud computing” services
are being used

• The primary determination of risk level is
therefore not which *aaS is being used,

• But rather whether your organization intends
to use or is using a public, private, or hybrid
cloud.

The Host Level

• SaaS/PaaS
– Both the PaaS and SaaS platforms abstract and

hide the host OS from end users
– Host security responsibilities are transferred to

the CSP (Cloud Service Provider)
• You do not have to worry about protecting hosts

– However, as a customer, you still own the risk of
managing information hosted in the cloud
services.

The Host Level (cont.)
• IaaS Host Security

– Virtualization Software Security
• Hypervisor (also called Virtual Machine Manager (VMM)) security is a key

– a small application that runs on top of the physical machine H/W layer
– implements and manages the virtual CPU, virtual memory, event

channels, and memory shared by the resident VMs
– Also controls I/O and memory access to devices.

• Bigger problem in multitenant architectures
– Customer guest OS or Virtual Server Security

• The virtual instance of an OS
• Vulnerabilities have appeared in virtual instance of an OS
• e.g., VMWare, Xen, and Microsoft’s Virtual PC and Virtual Server
• Customers have full access to virtual servers.

Data Security and Storage

• Several aspects of data security, including:
– Data-in-transit

• Confidentiality + integrity using secured protocol
• Confidentiality with non-secured protocol and encryption

– Data-at-rest
• Generally, not encrypted , since data is commingled with

other users’ data
• Encryption if it is not associated with applications?

– But how about indexing and searching?
– Then homomorphic encryption vs. predicate encryption?

– Processing of data, including multitenancy
• For any application to process data, not encrypted

Data Security and Storage (cont.)
– Data lineage

• Knowing when and where the data was located w/i cloud is
important for audit/compliance purposes

• e.g., Amazon AWS
– Store <d1, t1, ex1.s3.amazonaws.com>
– Process <d2, t2, ec2.compute2.amazonaws.com>
– Restore <d3, t3, ex2.s3.amazonaws.com>

– Data provenance
• Computational accuracy (as well as data integrity)
• E.g., financial calculation: sum ((((2*3)*4)/6) -2) = $2.00 ?

– Correct : assuming US dollar
– How about dollars of different countries?
– Correct exchange rate?

Where is (or was) that system located?
What was the state of that physical system?
How would a customer or auditor verify that info?

Data Security and Storage
• Data remanence
– Inadvertent disclosure of sensitive information is possible
• Data security mitigation?
– Do not place any sensitive data in a public cloud
– Encrypted data is placed into the cloud?
• Provider data and its security: storage
– To the extent that quantities of data from many companies are

centralized, this collection can become an attractive target for
criminals

– Moreover, the physical security of the data center and the
trustworthiness of system administrators take on new importance.

What Are the Key Privacy Concerns?

• Typically mix security and privacy
• Some considerations to be aware of:

– Storage
– Retention
– Destruction
– Auditing, monitoring and risk management
– Privacy breaches
– Who is responsible for protecting privacy?

Storage

• Is it commingled with information from other
organizations that use the same CSP?

• The aggregation of data raises new privacy issues
– Some governments may decide to search through

data without necessarily notifying the data owner,
depending on where the data resides

• Whether the cloud provider itself has any right to
see and access customer data?

• Some services today track user behaviour for a
range of purposes, from sending targeted
advertising to improving services

Retention

• How long is personal information (that is
transferred to the cloud) retained?

• Which retention policy governs the data?
• Does the organization own the data, or the

CSP?
• Who enforces the retention policy in the

cloud, and how are exceptions to this policy
(such as litigation holds) managed?

Destruction
• How does the cloud provider destroy PII at the end of the retention

period?
• How do organizations ensure that their PII is destroyed by the CSP at

the right point and is not available to other cloud users?
• Cloud storage providers usually replicate the data across multiple

systems and sites—increased availability is one of the benefits they
provide.
– How do you know that the CSP didn’t retain additional copies?
– Did the CSP really destroy the data, or just make it inaccessible to

the organization?
– Is the CSP keeping the information longer than necessary so that it

can mine the data for its own use?

Auditing, monitoring and risk
management

• How can organizations monitor their CSP and provide
assurance to relevant stakeholders that privacy
requirements are met when their PII is in the cloud?

• Are they regularly audited?
• What happens in the event of an incident?
• If business-critical processes are migrated to a cloud

computing model, internal security processes need to
evolve to allow multiple cloud providers to participate
in those processes, as needed.
– These include processes such as security monitoring,

auditing, forensics, incident response, and business
continuity

Privacy breaches

• How do you know that a breach has occurred?
• How do you ensure that the CSP notifies you

when a breach occurs?
• Who is responsible for managing the breach

notification process (and costs associated with
the process)?

• If contracts include liability for breaches resulting
from negligence of the CSP?
– How is the contract enforced?
– How is it determined who is at fault?

